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TWO-DIMENSIONAL

SUMMARY

UNSTEADY LIFT PROBLEMS IN

By ‘MAx.A. HEASLETand HARVARDLOMAX

I%e rariation of pressure distribution is calculatedfor a two-
dimen.sional supersonic airfoil either experiencing a s-udden
angle-of-attack change or entering a shurp-edged gust. From
these pressure distributions the indicial lijl functions applicable
to unsteady lift problems are determinedfor the two cases.

Re+ndts are presented which permit the determination of
marirnurnincrement in lift coefim”entattained by an unrestrained
airfm”ldum”ngit~$ight through a gust. As an application of
these results, the minimum altitude Jor safe jlight through a
~pem~c gust is calculatedfor a particular mperaonic un”ngof
p“renstrength and wing loading.

INTRODUCTION

The study of the unsteady Iift of wings in an incompressible
medium has been developed along two diHerent lines. In
reference 1, R. T. Jones introduced the concept of indicial lift
functions for wings of finite aspect ratio and, using as a basis
the work of Wagner (reference 2) on the two-dimensional
potential theory of airfoils in nonuniform motion, has shown
how the calculation of lift under various conditions of motion
can be effected. In reference 3, Theodorsen considered non-
steady motion in its relation to the general theory of a.ero-
dymnnic instability and the determination of the aerody-
namic forces on harmonically oscillating airfoils. This lat ter
approach has been extended to incIude high-speed problems
and in two recent papers Garrick and Rubinow (references
4 and 5) have given results on flutter and oscillating air-force
calculations for wings in supersonic flow.

The present report employs the method of attack intro-
duced by Jones and considers the case of a two-dimensional
airfoil moving supersonically in an arbitrary manner, pro-
vided the assumptions of small perturbation theory are satis-
fied. The principal contribution lies in the determination of
indicial pressure distributions -which are readily caIcuMed in
supersonic mot ion and from which indicial lift-, drag, and
pitching moments may be computed. From these results
the indicial lift functions are calculated explicitly. TIM
methods used to fid the pressure distributions also afford
considerable insight into the same problem for airfoils at
subsonic speeda.

As an application of the analysis, the results are applied to
the special case of an unrestrained airfoil entering a sharp-
edged gust. The resultant forces are found to be comparable

in magnitude, for Mach numbers in the neighborhood of 1.3,
to those given in reference 1 for subsonic incompressible flow.

SYMBOLS

acceleration factor
speed of sound
chord length
wing lift coefficient
section lift coefficient
section indicial lift coefficient for angle-of-at tacli

change
section indicial lift coe%cient for wing entering gust
net lifting force on wing
acceleration of gravity
free-stream Mach number
mass
difference in pressures between lower and upper

surfaces of airfoiI

‘w+tr=d~mi’pr-we(ifi’”o’)
distance measured in half-chord lengths
area of wing
perturbation static pressure
time in seconds
transformed time varirible (See equations (7).)
t~c
perturbation velocity component in z direction
free-stream velocity
perturbation velocity component in z direction
z component of velocity of gust
weight of wing
Cartesian coordinates

.

angle of-attack
wingdensity parameter (2m/p.34%)
perturbation density
fgx+stream density
area over which surface integrtd is evaluated
perturbation velocity potential

SUSS13ZIPTS

free+itream conditions
variable of integration
upper surface
lower surface
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ANALYSIS

DERIVATION OF BASIC DIFFERENTIAL EQUATION

The pressure distribution over an airfoil in a compressible
medium is obtainable from the solution of a boundary-value
problem associated with a partictiar second+rder partial
differential equation. The derivation of the linearized form
of this equation, obtained under the assumptions of small
perturbation theory, proceeds as follows:

Let U,W be perturbation veIocity components parallel,
respectively, to the Cartesian axes x’, z’ and denote by p
perturbation pressure, by p perturbation density, and by a
the velocity of sound. Then if i!’ denotes time, VOis the
constant free-stream velocity, and p. is the constant free-
stream density, the linearized Eulerian equations are

(1)

The linearized equations of continuity and state are, respec-
tively,

1

‘=GP

(2)

(3)

After the introduction of the perturbation velocity potentiaI
@ integration of equations (1) yields

M!
*p+constant~,+ V. ;~ ,=.=4

while equations (2) and (3) give the expression

( $+v”ai%=-(i$+s)”

(4)

(5)

The combination of equations (4) and (5) leads to the desired
partial differential equation

where M is the free-stream Mach number.
Equation (6) can be reduced to the normalized form of the

two-dimenstional wave equation of mathematical physics by
means of the transformation

x =Xf —&fa.#

2!=2’ 1 (7)

t=a@t’

In these variables the equation is written

(8)

In accordance with the assumptions underlying tho deriva-
tion of equation (8), its application ta problems in airfoil
theory is, of course, Iimited to cases where the induced ve-
locities are small compared to the free-stream velocity and the
effects of viscosity do not alter the results of the potmtial
flow solution.

The rectangular coordinate system associated with equa-
tion (6) @ tied in the wing which is, in turn, immersed in a
free stream of velocity VOdirected along the positive z axis.
The transformations introduced in equation (7) fixes the r, 2

coordinate system in space so that the airfoil moves in the
negative Y direction and the fre~stream velocity is zero. A
distortion of the time axis is also involved so that the ditTrr-
ential equation appears in canonical form.

SOLUTION FOR GIVEN BOUNDARY CONDITIONS

The boundary conditions which are to be satisfied have the
same prcpmty as those encountered in stmdy-st.ate thhl-
airfoil theory; that is, the prescribed data are given in the
z= O plane. The particular problems with which this report
deals are those of finding prwsure distributions over a ffnb
pIate. Thus, w will be specified over a portion of the Z@
phme and, elsewhere throughout the plane, loading must
be zexo.

Two boundary-value problems are tc be considered: first,
the casenf an airfoil either starting from red at a given angle
of attack a or expcwienc.ing along the entire chord a change a
in stream direction without a pitching motion, and second,
the cas~ of a constrained wing entering a sharp-edged gust
with a vertical velocity too. In the former case the motion is
that of an airfoil suddenly sinking without rotation. These
boundary conditions are more readily pictured with tho aid.
of figure 1. Figure 1 (a) shows the conditions whkh mys~
be satisfied in order to solve the angle-of-attack problt’m.
The trace of the leading edge of the wing traverses the line
x= —AA, while the trailing edge lies on x=c —Mt where c is
chord kmgth. The region bounded by these lines and the
Iinc t= o is the region occupied by the airfoil as time proses.
Since the.axes are fied and the airfoil moves in the negative
x direction, the velocity at which the airfoil travels deter-
mines the inclination of the leading- and trailing-odgc trams.
Over the “area” occupied by the airfoil in the x, t pkuw, w
must equal— VW and elsewhere no jump in pressure can occur.
The gust problem (fig. 1 (b)) does not differ essentially from
the previous problem except that hero the region over which
the modification of w is effective is not entirely the region
occupied by the airfoil but rather the region occupied simul-
taneously by the airfoil and the gust. Fting, for conven-
ience, the edge of the gust along the t axis, this axia will form
the righ~=hand boundary of the region over which w= —U*O.

Siice the partial difYerential equation is linear and t.hc
solutions are therefore additive, these boundary conditions
cledy should fit the following physical event: A wing of
trapezoidal plan form, indicated in figure 2, flies at a steady
Iift and angle of attack prior to t=O; at t=O the wing either
experiences a change in angle of attack a with no pitching
motion or enters a sharp-edged gust of constant vertical
velocity Wo,the gust extending from its edge to au negative



TWO-DIMENSIONAL U3WI’EADY LIF1’

z.-at I%sifion of leading A
edge offer f!me t-w, ~

U)=-VO Q! in shaded A
section-- A

~c z

\
\

\\
\

\\

\ ‘\
~=+k,

-----x=-t \
iroce of k,

ohoraoterie tio \,
cones \

\\

(d)

tw Su, crm lCiri.:g: ftw I. suddw amki- tt & ehwze.
lb} Supmanlc wing entering a dscrp-edgedgust at r-O.

FIGCREl.–BourIdary cmditions for WWSOlfC WbS&.

values of x. The v-ing in each case is then restrained so
that, relative to the origimd wind vector, the wing remains
at an angle of attack a or, in the gust case, continues fked
at the same angle of attack.

The solution to similar boundary-value problems has been
discussed at length in reference 6. In that. report the
development was adapted to the case where equation (8)
represented the steady-state equation for wing problems in
three dimensions and the charact eriatic cones of the equation
had the irrunediate physical interpretation of Mach cones or
infinitesimal shock disturbances. Green’s theorem was
applied to sd~’e the boundary-value problems involved and
it was shown that the solution obtained could be interpreted

~u’’”,,t-’’..-. “, /- \
-. / /.=” ~

- ---Trace of Mach cones
7%OJ?I[eading edge fip-~-”a
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as a surface distribution of sources and doublets. Finally,
the dithdties arising in the discussion of the singularities
on the characteristic coma and the integration of the super-
sonic doublets were overcome through the introduction of an
integration technique which involved using the” finite part”
of the given integrala.

The methods and conclusions obtained in reference 6 can
be adapted immediately to the problems discussed herein for
the mathematical reasoning remains almost. identical. The
physical interpretations of the two cases must, of course, be
modified. Thus, the characteristic cones of the differential
equations, traces of which are show-n in figures 1 and 3, are
no longer the we.11-knowmMach cones; rather, they represent
the distance to which a disturbance occurring at a point.
fixed by the apex of the cone vdl travel in the time t.
Despite the fact that such physical interpretations are
undeniably useful in understanding and applying the results,
the solution of the basic differential equation for the bound-
ary -raIues involved is quite independent of these material

Region A-~ Region B-., Re!

—. -1-—
Time iniervof lU

FIGURE3.-Sketch hdknthg Iocstims of regionsA, B, and C and time fnkwg used
In mrdysk.

dissimilarities. It follows that the methods de~eloped and
discussed in detaiI in reference 6 can be applied directly to
the gi~en problems with only minor changes in notation.

Yi5th reference to figure 1, it is evident that for supersonic
flight the air ahead of the wing is unaffected by the approach
of the wing and, further, that the induced velocities on the
upper surface of the airfoil are independent of the shape of
the lower surface. Consequently, the pressure distribution
will be found on the upper surface, as if the airfoil section
were spnmetrical, and then, for the flat plate, the pressure
distribution on the levier surface will be equal in magnitude
and opposite in sign. As in reference 6, the solution to such
a problem can be obtained from a distribution of sources.

In the actual computation of the pressures over a section
traveling at supersonic speeds, certain regions are con-
veniently defined. These regions depend on the relative
slope of the traces of the leading and trailing edges and the
trace of the characteristic cone in the r, t plane (fig. 3). The
perturbation velocity potential is given by the formula

Lf

dxldt,
Q--:

r J(t-tl)t- (Z–ZJ2-2
(9)

FrmmE 2–TyPe of Plsn fmm shrdhd h snalysfs.
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where a is the area in the x, tplane of the region occupied by
the wing section and bounded by the trace of the forecone
from the point z, s, t. If pu and p~ dmote, respectively,
pressures on the upper and lower surface of the wing

Wing equations (9) and (10), direct calculation shows that
for a sudden angle~f-attack change, the folIowing relations
hold

Ilegion A (between lines z =–.M, r= –f, and x=c–Mt)

(Ila)

It follows that in this region the steady-state Ackeret-type
load distribution has been attained.

Region B (between h.nes x= –t, z=t, and x=c–itlt)

(llb)
Region C (between lines x=t, t=O, and z=c–illt)

(1 lC)

The result obtained for Region C is of particular interest
since it holds for airfoils at subsonic as well as supersonic
speeds. kloieover, the metihanics of the interaction be-

-“tween the.airfoil tind the fluid are such.that other methods of
derivation, furnish@ added insight into the nature of. the
phenomenon, may be developed. Consider a flat plate of
infinite aepect ratio flying at a velocity V“ either greater than
or 1sss than the velocity of sound CZoin the undisturbed air.
The airfoil is assumed to undergo a change in its motion at
the time t=O so that subsequent to this time it has in-
creased its angle of attack by the amount a. It follows that
the sudden increment in lift can be calculated from a knowi-
edge of the induced effects on the air produced by an added
vertical velocity of the plate equal to —VW. As a redt of
this vertical motion two pkme Rayleigh waves will emanate
from the plate, a compression wave from the lower surface
and an expansion wave from the upper surface. The
velocities of the wave fronts are equal to ao while the induced
velocities in the waves are equal in mmgnitude to T,7W.

The lift on the wing can be determined in two ways: from
impulse relations and from energy considerations. In the
former case, assume that the forces per unit span on the
upper and lower surfaces are ju and jl, respectively. After
an elapse of time At the wave fronts have advanced a distance
@t and each includes a mass of air equal to p@a@tper unit
span. From Newton’s second law of motion

(jt-j.)At=(POCWW(2VCKY)

and, converting to lift coefEcient,

Since the force is distributed uniformly along the chord this
result is the equivalent of equation (1 lc).

In the development of the theory of piano wavm of small
amplitude (see, e. g., reference 7) Rayleigh and Lamb havo
shown fiat the energy in a wave is divided equally inta
kinetic and potential energy. Denote kinetic energy by

1
~Po SSS

u?dxdydz

where w is the perturbation velocity within the wave. Since
the energy induced in the wave must result from work done
on the plate, it can be seen that

or
tirjti)At= 2pOVoacaOAt

This equation is in agreement with the one obtained pre-
viously.

As ‘a-consequence of equation (1 lc) it followa that the
starting lift coefficientt of an airfoil is equfd to 4a/M for both
subsonic and supersonic flight. The magnitude of c1 thug
increases as M becomm smaLIer and for incompressible
theory, where the velocity of sound is indetlnitely large,
must necessarily ..be.come infinite. This fact was Iinmv4
previously along with the understanding tha~ the indicisl
lift function e~erienc= an infinite discontinuity at t=O.
(See W&&w’s-curve in a subsequent figure.) For values of
Ad other than zero_t.he starting lift is finite and a continuous
lift function results. .

.For a~sudden g~t with vertical velocity w the following
expressions can be found for the corresponding regions

Eegion A

. .

AP _ 4U)”

T–v”Vmfm “
---(12a)

Region B

(12b)

Begion C
Ap o—.

!2
(12C)

APPLICATIONS AND DISCUSSIONS

DISCUSSION OF LOAD DISTRIBUTIONS

Figure 4 shows. the variation of the lending on a smtion
which, while traveling at supersonic speed, is suddenly de-
flected to. a new amg]e of attack. The lo~ding varies accord-
ing to equation (11) for each of the three regions A, B, and C
of figure 3. At t=O the pressure is discontinuous, jumping
from its original value, just before the sudden deflection in
angle of attack, to 4cc.fMjust after the deflection. Figure 3
shows, however, that the initial loacl distribution is modified
over the.. forward portion of the section as

since regions A and B must he considered,

the wing lies entirely in region A so that

Ap _ 4a

~– -1

time increases

For t>fi,
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FmrEE J.–Vruiat1on of Jp,’fwith chordwfse station after sudden change in angIe of
atrnck. Regions defined in @me 3.

and the loading has at taim?d a static due agreeing with the
.Ackeret type of distribution. The loading in region B varies
between the t-ivo constant values of regions A and C, dipping
bdow thtit of region C and having its minimum -due at
r=o.

The load~w produced upon entering a shw-p-edgecl gust
is pictured in figure 5. The loading in region C is zero, since

9?477=1+1

that portion of the wing is unaware of the change in stream
conditions. Over the forward portion of the airfoil (~”on
A) the Ackere&type loading corresponding to the modified

angle of attack is in evidence and for t>hfi extends over

the entire chord of the wing. In region B the loading ex-
periences a reduction in rna~itude horn the value over the
~orward portion of the wing:
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(c) Time tntervrdIUj l/(iU-1)~

FIGCEI! b.–VarIaUon of Apff wfth ehrdivlse stsikm after ~tefhw &. _
deEnedfnfIgnre8.
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The load distributions which have been developed were
obtained for flight velocities in the supersonic regime. It is
apparent, however, that the basic differential equation is not
restricted to the case where WZ 1 and that the method of
analysis affords a means whereby transient load effects can
be studied for subsonic speeds. The essential difference
between the latter problem and the results derived here lies
in the relative position of leading- and trailing-edge traces
in the x$ plane and the trace of the characteristic cone.
Thus, for subsonic flight, the trace z= –t does not cut
across the region occupied by the airfoil; whereas the cone
stemming from the trailing-edge point c,O does. A qualita-
tive picture of the problem is obtained if the analogy between
the nonsteady two-dimensional case and three-dimensional
wing theory is used. The loading functions given in equa-
tion (11 ) are equivalent to loading existing on a swephfor-
ward tip of a three-dimensicmaI wing. Thus, in figure 1 (a),
z can represent distance measured spanwise, t can represent
distance measured chordwise, and the shaded area mm
represent a portion of the plan form of the wing. Using this
analogy, the loading which has been determined is merely
load distribution over the swept-forward tip of a wing with
constant chord wd supemonic leading edge. When the
case of the airfoil section traveling at subsonic speeds is to
be considered, the problem becomes one of determitig the
loading over the swept-forward tip of a wing with constant
chord and subsonic Ieading edge.

DEVELOPMENTOFlNDICIAL~ FUNCTIONS

Site section lift coefficient c1 is given by the expression

the relations presented in equations (11) and (12) are suffi-
cient for the determination of c~a, indicial lift coefficient for

change in angle of attack, and c,~, indiciaI lift coefficient for

an airfoiI entering a gust. As a result of direct integration,
the following results are obtained:

First time interval o<~<&-~
.-

C’”=:;
4w,f

Clt=–
cVo

(13a)

(14a)

Seoond time interval —~&<t<M&

[(

4al T
c! =— —a lr )

~4 ~+ arc sin C* +

t+ Mc—tMa 1

Jl;’–l arc Cos ~ 1
+~ T@- (c–my (13b)

.

ci*=—
(

c—Mt
)

~V~ ~+arc sin ~ +

4W0
~C CoS“+t’-M~t

lrvo ~m c
(14b)

Third time interval ~~l<t

““= JAG
(13C)

4W0
cl’=vo@’-l

(14L’)

Values of the lift functions are plotted in figure 6 as funr-
tions of s, the distance traveled hy the uirfoil nwasurcd in

2Mt
half-chord lengths where s= —“ The curves shown were

c
calculated for values of M equal to 1.2, 1.31, rmd 1.46, since

:8W ‘‘‘M-’-‘‘

FIGURE 13.-IndldRl M functionselm(s)and CI,(4) for variousfree-sticfun.MA nuMbcrs.

the asymptotic values of cl= ancl cz~for the three cases ngrec

with the vahms given in reference 1 for the subsonic wing at
aspect ratios of ~, 6, and 3, respectively. No dwect annlogy,
of course, can be made between the two cases. Ill is, how-
ever, }Vorthy of note that the variations in the inclicial func-
tions fcm the supemonic case are of the same order of mt@-
tude as those found in the finite-spun incompressible case.

From a know~cdge of the lift, function resulting from a
sudden unit angle of attack, it is possible to express the lift
corresponding to a given variable motion by considering
the given motion as being composed of infinitesimal steps
and summing the lifts corresponding to each step. Mi.ith-
ematiciilly, tho problem corresponds to the use of the
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DuhameI or Faltung integral and leads to the so-called
superposition theorem which can be written in the form

da(r’) d~,
c1(t’)=CC(o)cra(t’)+ forcl=(t’—r’) ~

dfs=~~Cr=(t’–r’)CY(r’)ch’(15)

The primes on the variables in this equation indicate that
true time is used.

I1OTIONOF AIRFOIL IN GUST

The results vrhich have been obtained will now be applied
to determine the forces on an unrestrained airfod entering
a gust. Since the motion of the TV@ is not prescribed it
becomes necessary to equate the dynamical forces in order
to relate the variabIes in-rolved. h’egkcting pitching
moment and using Xewton’s second law of motion!

m ~w=z forces
dt’ (16]

where w is the vertical -ielocity of the wing, m is the mass of
the wing, and the forces to be summed resuIt from the lift
on the wing and the impressed force ressdting horn the
action of the gust. By means of equation (15j, equation
(16) can be rewritten in the form

m$%q~-$~’ CL=(t’–T’)a(r’)d/= “0 c~ Lg(O@ (17)
.

Introducing a change of variables such that

T=: Q, T,=; G

and setting
u? 2nl
r=”’ ~=a

the equation becomes, finally,

dad”
sP iiT+~T O C’L=(T–TJcc(TJdZ’,=~ d.,(~ (18)

Since a(0)=O, equation (1S) can be integrated to gi-ie:

J

?oI)l T
“–TO ; II

CL$T,)dTl+:~” CL=(T– TJa(Z’JdTl=O (19)

which is an integral equation of the second kind with a varia-
ble upper limit. The solution to this equation can be obtained
quite satisfactorily by means of Llouville’s method of suc-

cessive substitution. tTsing the relation CL=,U ~T and per- ,

forming the proper manipulations gives:

s+ ~TC.=(T–T,)dTIJT’ ~.=(Tl– T,) CL~(TJG?Tz–. . .
0

(20)

IZquation (20) is known to converge uniformly for .
~~

T<34 and in the applicatiomc of this report the

maximum Iift was ahvays experienced in the region of con-
vergence.

The -iaIues of lift coefficient C’Ldetermined from the wlu-
tion of equation (20) are shown in figures 7 (a), 7 (b}, and
7 (c) for various mIues of P and for M= 1.2, 1.31, and 1.46.
Figge S shows the variation of the maximum lift coefficient
attained plotted as a function of the demqity parameter ~ for
the same three -raIues of 31. Figure 9 furnishes a comparison
bet ween the matium lift-coefficient. increment given in
reference 1 for an aspect ratio of 6 and the corresponding

(a].}1-Lm. ,.

FWTEE 7.—Vmiatfon cdIncxementMM coefEdentduring fUght throughunit ,
Skp4ged gust.
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FIGCEE 7.-ConcIuded.

value calcuhit ed in the present report for M= 1.31. The
4m

results are plotted as functions of pf=— to correspond withpsc
the density parameter used by Jones. The correspondence
which was noted for the indicial lift functions with Mach
number replacing wing aspect ratio is still in evidence.
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sharpedged gust betwen subsdc wing and supersonicwing.

FORCES DEVELOPED OX GIVEN ‘WWG

As an example of the uses to which the results just obtained
can be applied, consider an airplane with wing of phm form
such as the one shown in figure 2. Assume a wing loading
of 40 pounds per square foot, a chord length of 8 feet, and
let it be specified that the wing is flying at a Mach number
equal to 1.2 and that the wing is built to withstand forces
producing accelerations between – 3 and 5 times gravita-
tional acceleration. It is proposed to fid at what altitudes
the wing may be subjected safely to a gust possessing a
vertical velocity of 50 feet per second.

If F denotes the net lifting force on the wing,

where H“ is wing weight and Zg is the total lift produced by
the gust. If (Ad.)m~ is the maximum increment in lift
coefhcient attained in a unit gust- and il is the acceleration

..—
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factor measured in multiples of g, then equation (21) is
expressible in the form

.i=I + (AcL)maz~ ~ POVO

Since it is required that !A–1 ]~4, it folIows that

(22)

Figure 10 shows the limit curve of (ACL)=ti p!otted ss a
function of flight altitude. From a knowledge of ~=21T/

L 7

Increment in Ii’ff for
wing of M“ L20

-,6 / /
I 1 I /

o 8 16 2.4 32 40
Ntifud% /O-S feef

FIGUM U1.-l!afe altitudw for dugwith loedhgd 40 ib/ft ~ flying at M- I.%1, bawd m
50ft/wcgust WMLY and max.lmumload racbxsc44 and –3#.

P~.MS’c, however, the value of (AC.)~a. actually attained
by the wing entering the gust can be calculated. Such
values are also included in figure 10 and indicate that., under
the given conditions, the ~ should
Iess than appro.ximateIy 28,000 feet.

not fly at an altitude
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